Motores marinos de 2 tiempos

Sin comentarios

Los motores marinos, en su mayoría operan en dos tiempos pudiendo emplear como combustible gasóleo o fuelóleo, en el caso del motor diesel y gas natural, normalmente en el caso del motor Otto.  En el caso de los motores de dos tiempos el consumo de combustible es inferior a bajas revoluciones respecto al de cuatro tiempos, siendo por ello el principal candidato como generador de energía mecánica para la propulsión de un buque.


Estos motores alternativos, a diferencia de los motores de cuatro tiempos, completan el ciclo en una vuelta del cigüeñal y no requieren de válvulas de admisión y pueden tener, o no, válvulas de escape. Las etapas del ciclo termodinámico son, igual que en el motor de cuatro tiempos: la admisión, la compresión, la expansión y el escape. Otra diferencia constructiva importante es el hecho que en estos motores el cárter es hermético ya que se utiliza para la admisión de la mezcla.

motor marino 2 tiemps

Imagen cortesía de Wärtsilä, sujeta a su Copyright

El ciclo puede explicarse comenzando por el punto muerto superior, después de la admisión de la mezcla y la ignición de la misma por parte de la bujía, en el caso del motor Otto o su autoencendido por compresión, en el caso del motor diesel. En el caso de disponer de válvulas de escape, éstas se abrirán entre 110 y 120º después del paso por el punto muerto superior para permitir la salida de los gases, en el caso de disponer de lumbreras, éstas quedarán abiertas comunicando el interior del cilindro con la atmósfera. Durante esta carrera descendiente del pistón se produce la expansión  y la entrega de potencia. El incremento de presión y temperatura que se produce merced a la combustión obliga al pistón a descender y los gases de la combustión ceden su entalpía, reduciendo de nuevo su presión y temperatura. Poco después alrededor entre 20 y 30º de vuelta del cigüeñal quedará abierto el conducto de admisión de aire o mezcla en el caso del motor Otto, éste es obligado a circular por el interior del cárter por la cara inferior del pistón.

motor-dos-tiempos

Encontrándose el pistón en el punto muerto inferior el pistón comienza a subir por la energía que le comunica el volante de inercia. Conforme sube el pistón alrededor de 10 y 20º la mezcla admitida anteriormente queda comunicada con el interior del cilindro, estando abierta la lumbrera de escape, ésta desplaza a los gases hacia la atmósfera. El periodo en que tanto la admisión como el escape están abiertos se conoce como barrido. El pistón continúa subiendo cerrando la lumbrera de escape y el conducto de admisión por lo que el aire, en el caso del motor diesel o la mezcla en el caso del motor Otto, se comprime por la acción de la cara superior del pistón.

Artículo escrito por: Francisco Soler Preciado

Bibiliografía

W.W.PULKRABEK. “Engineering Fundamentals of the Internal Combustion Engine”. Perntice-Hall, Inc 1997. 

D WOODYARD, ed al. “Pounder’s Marine Diesel Engines and Gas Turbines”. Ed 8. Londres, 2004. ISBN: 0-7506-5846-0.

Sin comentarios

Comentar





Quizás también le interese

Hélices de paso variable

Un comentario

 

La hélice del buque es el elemento que transforma el movimiento rotativo que produce el motor en una fuerza de empuje. Cada sección de la hélice puede considerarse como un perfil hidrodinámico que provoca diferencias de flujos entre las caras activa y pasiva. Estas diferencias de flujo se crean debido a las variaciones geométricas de […]

Tratamiento de aguas: Clarificación (Parte 3)

Sin comentarios

 

Continuamos con más tipos de decantadores utilizados a nivel Industrial para el proceso de sedimentación  pueden empezar en el artículo Clarificación parte 1. Decantadores de recirculación de fangos Este tipo de decantadores están basados en el principio de contacto agua-sólido. Están constituidos por una zona de reacción, donde se lleva a cabo la floculación, y una zona de […]

Transferencia de energía térmica

5 Comentarios

 

Existen tres formas de transmisión de energía térmica de un lugar a otro: conducción, convección y radiación: Conducción En la conducción, la energía se transmite en forma de calor como consecuencia de las interacciones entre átomos o moléculas, aunque no exista transporte de los mismos. Por ejemplo, si se calienta uno de los extremos de […]

Back to Top